
[Wang, 3(9): September, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[368]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

FPGA Implementations of Tiny Mersenne Twister

Guoping Wang
Department of Engineering, Indiana University Purdue University Fort Wayne, Fort Wayne, Indiana

wang@ipfw.edu

Abstracts
Random number generators are essential in many computing applications, such as Artificial Intelligence like

genetic algorithms and automated opponents, random game content, simulation of complex phenomena such as

weather and fire, numerical methods such as Monte-Carlo integration, cryptography algorithms such as RSA use

random numbers for key generation, digital signal processing and communications, etc. Pseudo-random Number

Generators (PRNGs) generate a sequence of “random” numbers using an algorithm, operating on an internal state,

such as Linear Congruential Generator, Truncated Linear Congruential Generator, Linear Feedback Shift Register,

Inversive Congruential Generator, Lagged Fibonacci Generator, Cellular Automata, Mersenne Twister, etc. The

Mersenne Twister method, which avoided many of the problems with earlier generators and widely used in many

applications, was proposed in 1998. In 2011, a tiny version of Mersenne Twister (TinyMT) was proposed. In some

applications for example, where the large state size (19937 bits) of Mersenne Twister may be an obstruction for

implementation. TinyMT is designed for such situation, with small state size and good randomness for that size of

internal state. In this paper, FPGA implementations of four different TinyMT architectures were proposed and realized

on Xilinx Virtex-4 FPGAs for the first time. The proposed designs can achieve very high throughput but with relatively

very small areas.

Keyword: Pseudo Random Number Generator, Mersenne Twister, FPGA.

Introduction

Random number generators are essential in many

computing applications, such as Artificial Intelligence

like genetic algorithms and automated opponents,

random game content, simulation of complex

phenomena such as weather and fire, numerical

methods such as Monte-Carlo integration,

cryptography algorithms such as RSA use random

numbers for key generation, digital signal processing

and communications, etc. Pseudo-random Number

Generators (PRNGs) generate a sequence of

``random'' numbers using an algorithm, operating on

an internal state, such as Linear Congruential

Generator, Truncated Linear Congruential Generator,

Linear Feedback Shift Register, Inversive

Congruential Generator, Lagged Fibonacci Generator,

Cellular Automata, Mersenne Twister, etc. PRNG

algorithms are of active research, for both the quality

and performance aspects in the following areas:

 As the execution speed is increasing, it

demands a fast random number generation.

 The longer period is always better than the

shorter one for PRNG generator. A good

PRNG algorithm should have a long length

of period to guarantee the randomness of the

sequence.

 A fast PRNG should have a small number of

internal state as high-speed memory is

expensive.

 A fast PRNG algorithm should be able to

generate independent multiple sequences

concurrently or in parallel.

The Mersenne Twister method, which avoided many

of the problems with earlier generators and widely

used in many applications, was proposed in 1998 [1].

Two versions, MT11213 and MT19937, were

developed with periods
112132 1 and

199372 1

(approximately
600110), which represents far more

computation than is likely possible in the life of the

entire universe. MT19937 uses an internal state of

624-bit longs, or 19968 bits, which is about expected

for the huge period. It is (perhaps surprisingly) faster

than the Linear Congruential Generators, is

equidistributed in up to 623 dimensions, and has

become the main RNG used in statistical simulations.

The speed comes from only updating a small part of

the state for each random number generated, and

moving through the state over multiple calls. It is now

increasingly becoming the random number generator

http://www.ijesrt.com/
wang@ipfw.edu

[Wang, 3(9): September, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[369]

of choice for statistical simulations and generative

modeling.

Hardware implementation on reconfigurable

hardware, especially on Field Programmable Gate

Array (FPGA)s has attracted a great deal of interest in

the past 20 years as they can can offer very high

performance of a dedicated hardware but also with the

feature of programmability flexibility. There are few

published reports on Mersenne Twister

Implementation on FPGAs [2],[3],[4], and [5]. In [3],

a three-stage of initialization process, generator, and

output number extractor with pipelined structure was

implemented in Xilinx XCV2000E FPGA. In [5], only

the output section was implemented on Xilinx Virtex4

FPGAs.

In 2011, a tiny version of Mersenne Twister (TinyMT)

was proposed [6] by Satio and Matsumoto. TinyMT is

a variant of Mersenne Twister, specially designed with

a small memory footprint. Satio and Matsumoto have

shown that TinyMT passed the BigCrush tests of

TestU01 [7]. There are two types of TinyMT,

TinyMT32 and TinyMT64. TinyMT32 outputs 32-bit

unsigned integers and single precision floating point

numbers. On the other hand, TinyMT64 outputs 64-bit

unsigned integers and double precision floating point

numbers. TinyMT is not designed to replace Mersenne

Twister. In some applications for example, in

embedded system where, the large state size (19937

bits) of Mersenne Twister may be an obstruction for

implementation. TinyMT is designed for such

situation, with small state size and good randomness

for that size of internal state. TinyMT is a small-sized

pseudo random number generator, compared with

Mersenne Twister or WELL RNG. TinyMT32 uses 16

bytes for its internal state vector and 12 bytes for its

parameters, and TinyMT64 uses 16 bytes for its

internal state vector and 16 bytes for its parameters.

Pseudo random number sequences generated by

TinyMT32 has a period of
1272 1 .

In this paper, for the first time, an FPGA

implementation of TinyMT32 was realized on Xilinx

Virtex4 FPGA which can achieve very high

throughput with very small area. Four different

implementation architectures are proposed for various

applications. The proposed designs are captured using

VHDL and simulated to verify the correctness of its

functionality using Mentor Graphics Modelsim

simulator. The implementation results (Xilinx FPGA

slices, block RAMs, maximum working frequency,

throughput, etc) are compared to show that they can

have a very high throughput with small area footprint

compared to the full version of Mersenne Twister and

other comparable PRNGs.

The rest of the paper is organized as follows: Section

2 introduces the algorithm of Mersenne Twister and

Tiny MT. Section 3 gives the implementation of

TinyMT on Xilinx FPGAs. The implementation

results are described in Section 4 and Section 5

concludes this paper with the summary and

conclusion.

Mersenne Twister and TinyMT Algorithms
In this section, background information of

MT19937 and TinyMT algorithms is described.

Mersenne Twister(MT) is a pseudo random number

generating algorithm developed by Makoto

Matsumoto and Takuji Nishimura in 1998 [1]. The MT

algorithm was developed with the following merits:

 It is designed with consideration on the flaws

of various existing generators.

 The algorithm is coded into a C-source

downloadable.

 Far longer period and far higher order of

equidistribution than any other implemented

generators. It is proved that the period is
199372 1 , and 623-dimensional

equidistribution property is assured.

 Fast generation. Although it depends on the

system, it is reported that MT is sometimes

faster than the standard ANSI-C library in a

system with pipeline and cache memory.

 Efficient use of the memory. The

implemented C-code mt19937.c consumes

only 624 words of working area.

MT is a variant of Twisted Generalized Feedback Shift

Register modification in order to allow a Mersenne

prime period. The characteristic polynomial has many

terms, and has good distribution up to v bits of

accuracy for 32 1v  . The Mersenne Twister

algorithm generates a sequence of word vectors, which

are considered to be uniform pseudo random integers

between 0 to 2 1w  . Dividing it by 2 1w  , each

word vector can be a floating point number in [0,1].

TinyMT is a variant of Mersenne Twister (MT)

proposed by Saito and Matsumoto [6] in 2011. It is a

small-sized pseudo random number generator,

compared with Mersenne Twister or WELL RNG.

TinyMT32 uses 16 bytes for its internal state vector

and 12 bytes for its parameters, and TinyMT64 uses

16 bytes for its internal state vector and 16 bytes for its

parameters. Pseudo random number sequences

generated by TinyMT has a period of
1272 1 .

TinyMT is specially designed for a small memory

footprint. On TinyMT, the users can generate multiple

http://www.ijesrt.com/

[Wang, 3(9): September, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[370]

independent sequences when choosing different

sequence parameter sets from TinyMT Dynamic

Creator (DC) [1]. The seed jumping function, which

calculates the internal state of TinyMT after an

arbitrary steps of the recursive state transitions, is also

provided to make multiple non-overlapping sequences

from the same sequence parameter sets. TinyMT is

licensed under the BSD License as well as the other

MT variants.

TinyMT is a combination of two different functions:

the state transition function and the output function.

Two different output functions with 32-bit and 64-bit

tempering parameters are proposed. The size of

TinyMT internal state with generation parameters for

the 32-bit tempering parameter is 28 bytes including

the 127-bit internal state and three 32-bit generation

parameters. The period of each generated number

sequences is
1272 1 . Saito and Matsumoto [6] have

showed that TinyMT passed the BigCrush tests of

TestU01[7], and estimated that the total number of

generation parameter sets MAT1, MAT2 and TMAT

which could be generated by the TinyMTDC, a

variation of MT DC algorithm for TinyMT, is
58 2

regarding the number of computed irreducible

polynomials. TinyMTDC is written in C++ and

depends on Number Theory Library (NTL) [7].

There are two types of TinyMT: TinyMT32 and

TinyMT64. TinyMT32 outputs 32-bit unsigned

integers and single precision floating point numbers.

On the other hand, TinyMT64 outputs 64-bit unsigned

integers and double precision floating point numbers.

TinyMT is not designed for a particular hardware. It

will run on many types of hardware, because of its

small size. TinyMT generates pseudo random numbers

using two functions: a state transition function and an

output function. The state transition function is an F2-

linear function whose characteristic polynomial is

irreducible of degree 127. The output function is not

F2-linear, but almost F2-linear. The output function is

composed from several F2-linear functions, except for

one non F2-linear operation, namely an addition as

integers modulo 232 (or mod 264 for TinyMT64)

which replaces an F2-vector addition.

TinyMT is not designed to replace Mersenne Twister.

In some applications, namely, hardware

implementation or highly parallel environment, the

large state size (19937 bits) of Mersenne Twister may

be an obstruction for implementation. TinyMT is

designed for such situation, with small state size and

good randomness for that size of internal state.

The C-code implementation of TinyMT main

functions can be seen in Figure 1.

Figure 1. TinyMT Functions in C

This paper mainly focuses on the FPGA

implementations of TinyMT32. Various

implementation architectures are described for

different applications.

FPGA Implementation of TinyMT-32
An analysis of TinyMT algorithm shows that the

process of generating Tiny Mersenne Twister number

32-bit can be separated into the following 4 steps:

1) Using TinymtDC, generating the parameters

MAT1,MAT2,TMAT required for

TinyMT32.

http://www.ijesrt.com/

[Wang, 3(9): September, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[371]

2) In Tinymt32, based on the input parameters

MAT1,MAT2, and TMAT, initialize the four

32-bit TinyMT status words with initial

random 32-bit seed. This process consists of

MIN_LOOP, Period Certification and Init

Next State update.

3) Calling the Next State function, update the

TinyMT four 32-bit status words and

generating the untempered numbers.

4) Calling the temper function, outputting the

generated random 32-bit number.

The initialization process only runs once at the

beginning of its generation, and it will not be called

again during the generating process. Moreover, the

generating and tempering processes only require logic

and XOR operating which consume relatively few

logic resources on FPGAs. In our implementation, step

1 is performed with software in advance, the

generating three 32-bit parameters, that is, MAT1,

MAT2 and TMAT can be stored in constant memory

(ROM). Depending on the requirements of the project,

if only a limited random number sequence is needed,

then step 2) can also be computed using software in

advance and stored on FPGA memory. Otherwise, step

2) to 4) can be implemented on FPGA hardware. For

example, assuming that we can use 1024 Byte

parameter ROM to store the parameters generated by

TinymtDC and assuming that each group (3

parameters) takes up 3 32-word, then the 1024 byte

can store more than 64 distinct group parameters to be

used by TinyMT generator. The initialization step will

update the TinyMT 4 32-bit status words with the

initial 32-bit seed based on these preset parameters.

The TinyMT can generate more than 64 distinct 32-bit

random number sequences. If the number of these

distinct group random number sequence is enough,

then in the system, we only need FPGA to implement

step 3 and 4. Otherwise, steps 2 to 4) are implemented

in the FPGA hardware, in which the initial seed ranges

from 0 to
322 1 and the TinyMT can generate a very

large number sequence of random numbers, as high as
3264 2 distinct random number sequence.

In the following, four different FPGA

implementations of TinyMT32 are described, that is,

TinyMT engine 1 without ROM, TinyMT engine 1

with ROM, TinyMT engine 2 without ROM and

TinyMT engine 2 with ROM.

A. Design 1: TinyMT32 Engine 1 without ROM

In this implementation, the parameters generated from

TinyMTDC are initialized/updated by software in

advance into four 32-bit status words and are loaded

into the TinyMT engine. The initialized parameters are

not stored on FPGA memory, instead, they are loaded

before the generating process. This design takes the

smallest area and can achieve the highest throughput.

Figure 2 shows the schematic of such a design.

However, since the parameters are not stored on

FPGA, each time a new random sequence is generated,

a new group parameters (the initialized four 32-bit

status words and MAT1,MAT2 and TMAT from

TinyMTDC) will be loaded externally into the FPGA.

Figure 2. TinyMT Engine 1 without FPGA Memory

http://www.ijesrt.com/

[Wang, 3(9): September, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[372]

B. Design 2: TinyMT32 Engine 1 with on-chip

ROM

In this implementation, the parameters generated from

TinyMTDC are initialized/updated by software in

advance into four 32-bit status words. They are stored

on FPGA block RAMs. Assuming that 1024 byte on-

chip RAM is used to store the precalculated

parameters. Each group status word takes up four 32-

bit, that is, 16 bytes, and 1K RAM can store 64 distinct

group precalculated parameters. Since both the

initialized status words (four 32-bit) and MAT1,

MAT2 and TMAT from TinyMT DC are required for

the generated, totally 7 block RAMs are needed to

store these parameters for generation. One advantage

compared to implementation 1 is that implementation

2 can generate up to 64 different random number

sequences. Figure 3 shows the schematic of

implementation 2. This design has the small memory

footprint and high throughput, with a little complex

controller circuit.

Figure 3. TinyMT Engine 1 with on-chip FPGA Memory

C. Design 3: TinyMT32 Engine 2 without ROM

The difference between designs 1, 2 and designs 3, 4

is that, in designs 3 and 4, the parameters MAT1,

MAT2 and TMAT are generated by TinyMTdc in

advance using software, then they are loaded into the

TinyMT engine 2 for hardware initialization and

update. Thus the initialization process is realized on

hardware instead of software. In designs 3 and 4, the

random initial 32-bit seed can be initialized into a

value between 0 and
322 1 , thus up to

322 different

random number sequence can be generated for one

group parameter, MAT1, MAT2 and TMAT. If 1024

byte on-chip RAM is accessible on FPGA, then up to
3264 2 distinct random number sequence can be

created.

In design 3, the parameters MAT1,MAT2, and TMAT

are loaded into the TinyMT engine when a new

random number sequence is needed with the schematic

shown as Figure 4.

http://www.ijesrt.com/

[Wang, 3(9): September, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[373]

Figure 4. TinyMT Engine 2 without on-chip FPGA

Memory

D. Design 4: TinyMT32 Engine 2 with

parameters stored in ROM

This is the most flexible TinyMT engine design. Sixty-

four distinct group of MAT1,MAT2 and TMAT

parameters are stored on FPGA 1024 byte RAM. Each

time, when a new random number sequence is needed,

the engine loads one group of parameters. When all 64

group parameters are used up, then the random seed is

increased by 1, hence, a new random number sequence

can be generated. This implementation takes up the

most space with the sacrifices of a little more space.

http://www.ijesrt.com/

[Wang, 3(9): September, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[374]

Figure 5. TinyMT Engine 2 without on-chip FPGA Memory

The block diagram can be seen in Figure 5. In this

implementation, the data path consists of block RAM

(or registers), controller (Finite State Machine),

Multiplexers. After reset, the seed is initialized to a

predetermined number (for example, 0), then the FSM

controls the TinyMT engine into initialization state, in

which the MAT1,MAT2,TMAT and SEED are

converted and updated. This initialization states

consist of three substates, that is, MIN_LOOP,

PERIOD_CERTIFRICATION and Init Next State.

This initialization state is only executed once in the

beginning of the generation. After the initialization

state, the FSM controls the TinyMT engine into

generating state. In this generating state, it generates a

sequence of 32-bit random number every clock until it

reaches the required quantity of random number. The

generated untempered 32-bit random number is

tempered for the output. For design 4, a total number

of
3264 2 distinct random number sequence can be

generated.

1. Results and Comparisons

The proposed Tinymt designs 1, 2 3 and 4 are captured

with VHDL using Xilinx ISE 13.2 ISE Suite,

simulated using Modelsim SE simulator to verify this

functionality and implemented on Xilinx Virtex4 VFX

100 FPGA (xc4vfx100-10ff152).

Table 1 describes the synthesis results with the

maximum frequency, number of slices, number of

LUTs used, RAM, number of DSP48s and throughput

for each design.
Table 1. Performance Analysis Comparison of Tinymt Engines

Design RAMs # of slices # of LUTs Max Freq.

(Mhz)

of DSP48s Throughout

Gb/s

1 0 206 355 390 0 12.48

2 7 175 335 349 0 11.17

3 0 468 818 87 3 2.78

4 3 444 859 87 3 2.78

http://www.ijesrt.com/

[Wang, 3(9): September, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[375]

Table 2. Comparison of Design Parameters with Other PRNGs

Design FPGA # of Slices # of LUTs # of RAMs Max Freq

(Mhz)

Tinymt Engine

4

Virtex-4 444 859 3 87

[2] N/A 420 N/A N/A N/A

[3] Virtex E 330 539 2 24.23

[4] Virtex-5 2028 N/A N/A 111

From

Table 1, we can see that, for implementations of

TinyMT designs 1 and 2, the number of slices,

maximum working frequency, highest throughput are

very similar except that 7 64x32-bit RAMs are needed

for TinyMT design 2 due to the fact that the parameters

from TinyMT DC and initialized parameters are stored

on FPGA RAMs. For the implementations of TinyMT

designs 3 and 4, the number of slices, maximum

working frequency, the number of DSP48s, highest

throughput are also very similar except that 3 64x32-

bit RAMs are needed for TinyMT design 4 since the

parameters MAT, MAT2 and TMAT from TinyMT

DC are stored on FPGAs. Designs 1 and 2 have a much

higher throughput and maximum working frequency

and takes up smaller areas compared to designs 3 and

4, because the initialization process are hardware

implemented for TinyMT designs 3 and 4. TinyMT

designs 3 and 4 also need three additional DSP48s for

the initialization. For applications which need limited

random number sequence, TinyMT designs 1 and 2

could be good candidates. If a large distinct number of

random number sequence is required, then TinyMT

designs 3 and 4 will good choices. If there are

additional block RAM available on FPGAs, TinyMT

designs 2 and 4 are better choices than designs 1 and

3.

Since no previous FPGA implementation of TinyMT

is available for comparison, we only compare the

proposed TinyMT design with MT19937 full version

and the results can be seen in

Table 2.

From this table, we can see that the proposed TinyMT

implementation can achieve a significantly higher

throughput and occupies less area compared to the

previous MT1997 on FPGA implementations.

Conclusion and Summary
Random number generators are essential in

many computing applications. TinyMT, a variant

PRNG of the popular Mersenne Twister, has been

implemented on FPGA for the first time in this paper.

Four TinyMT engines are proposed for different

application areas. The proposed implementations

show a significant high throughput and with small

areas which are applicable in fields where area is a

concern.

Reference
[1]. M. Matsumoto, T. Nishimura, Dynamic

creation of pseudorandom number

generators, in: In Proceedings of the Third

International Conference on Monte Carlo and

Quasi-Monte Carlo Methods in Scientific

Computing, 1998, pp. 56–69. URL

http://www.math.sci.hiroshima-u.ac.jp/~m-

mat/MT/ARTICLES/articles.html

[2]. V. Sriram, D. Kearney, An area time efficient

field programmable mersenne twister

uniform random number generator, in:

Proceedings of 17 the International

Conference on Engineering of

Reconfigurable Systems and Algorithms,

2006.

[3]. S. Chandrasekaran, A. Amira, High

performance fpga implementation of the

mersenne twister, in: Electronic Design, Test

and Applications, 2008. DELTA 008. 4th

IEEE International Symposium on, 2008, pp.

482 –485. doi:10.1109/DELTA.2008.113.

[4]. D. Pellerin, E. Trexel, M. Xu, Fpga-based

hardware acceleration of c/c++ based

applications, in: Impulse Accelerated

Technologies, 2007. URL

http://www.eetimes.com/design/programma

ble-logic/4015124/FPGA-based-hardware-

acceleration-of-C-C--based-applications--

Part-1

[5]. X. Tian, K. Benkrid, Mersenne twister

random number generation on fpga, cpu and

gpu, in: Adaptive Hardware and Systems,

2009. AHS 2009. NASA/ESA Conference

on, 2009, pp. 460 –464.

doi:10.1109/AHS.2009.11.

http://www.ijesrt.com/

[Wang, 3(9): September, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[376]

[6]. M. Saito, M. M., A high quality pseudo

random number generator with small internal

state [in japanese], in: Information

Processing Society of Japan (IPSJ) SIG

Notes, no. 2011-HPC-131(3), 2011, pp. 1–6.

URL

http://ci.nii.ac.jp/naid/110008620834/en/

[7]. P. L’Ecuyer, R. Simard, Testu01: A c library

for empirical testing of random number

generators, ACM Trans. Math. Softw. 33 (4).

doi:10.1145/1268776.1268777.URL

http://doi.acm.org/10.1145/1268776.126877

7

[8]. V. Shoup, NTL: A library for doing number

theory (2009). URL

http://www.shoup.net/ntl/

http://www.ijesrt.com/

