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Abstracts 
Random number generators are essential in many computing applications, such as Artificial Intelligence like 

genetic algorithms and automated opponents, random game content, simulation of complex phenomena such as 

weather and fire, numerical methods such as Monte-Carlo integration, cryptography algorithms such as RSA use 

random numbers for key generation, digital signal processing and communications, etc. Pseudo-random Number 

Generators (PRNGs) generate a sequence of “random” numbers using an algorithm, operating on an internal state, 

such as Linear Congruential Generator, Truncated Linear Congruential Generator, Linear Feedback Shift Register, 

Inversive Congruential Generator, Lagged Fibonacci Generator, Cellular Automata, Mersenne Twister, etc. The 

Mersenne Twister method, which avoided many of the problems with earlier generators and widely used in many 

applications, was proposed in 1998. In 2011, a tiny version of Mersenne Twister (TinyMT) was proposed. In some 

applications for example, where the large state size (19937 bits) of Mersenne Twister may be an obstruction for 

implementation. TinyMT is designed for such situation, with small state size and good randomness for that size of 

internal state. In this paper, FPGA implementations of four different TinyMT architectures were proposed and realized 

on Xilinx Virtex-4 FPGAs for the first time. The proposed designs can achieve very high throughput but with relatively 

very small areas. 
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Introduction 

Random number generators are essential in many 

computing applications, such as Artificial Intelligence 

like genetic algorithms and automated opponents, 

random game content, simulation of complex 

phenomena such as weather and fire, numerical 

methods such as Monte-Carlo integration, 

cryptography algorithms such as RSA use random 

numbers for key generation, digital signal processing 

and communications, etc. Pseudo-random Number 

Generators (PRNGs) generate a sequence of 

``random'' numbers using an algorithm, operating on 

an internal state, such as Linear Congruential 

Generator, Truncated Linear Congruential Generator, 

Linear Feedback Shift Register, Inversive 

Congruential Generator, Lagged Fibonacci Generator, 

Cellular Automata, Mersenne Twister, etc. PRNG 

algorithms are of active research, for both the quality 

and performance aspects in the following areas: 

 As the execution speed is increasing, it 

demands a fast random number generation. 

 The longer period is always better than the 

shorter one for PRNG generator. A good 

PRNG algorithm should have a long length 

of period to guarantee the randomness of the 

sequence. 

 A fast PRNG should have a small number of 

internal state as high-speed memory is 

expensive.  

 A fast PRNG algorithm should be able to 

generate independent multiple sequences 

concurrently or in parallel. 

The Mersenne Twister method, which avoided many 

of the problems with earlier generators and widely 

used in many applications, was proposed in 1998 [1]. 

Two versions, MT11213 and MT19937, were 

developed with periods 
112132 1  and 

199372 1  

(approximately 
600110 ), which represents far more 

computation than is likely possible in the life of the 

entire universe. MT19937 uses an internal state of 

624-bit longs, or 19968 bits, which is about expected 

for the huge period. It is (perhaps surprisingly) faster 

than the Linear Congruential Generators, is 

equidistributed in up to 623 dimensions, and has 

become the main RNG used in statistical simulations. 

The speed comes from only updating a small part of 

the state for each random number generated, and 

moving through the state over multiple calls. It is now 

increasingly becoming the random number generator 
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of choice for statistical simulations and generative 

modeling.  

 

Hardware implementation on reconfigurable 

hardware, especially on Field Programmable Gate 

Array (FPGA)s has attracted a great deal of interest in 

the past 20 years as they can can offer very high 

performance of a dedicated hardware but also with the 

feature of programmability flexibility.  There are few 

published reports on Mersenne Twister 

Implementation on FPGAs [2],[3],[4], and [5]. In [3], 

a three-stage of initialization process, generator, and 

output number extractor with pipelined structure was 

implemented in Xilinx XCV2000E FPGA. In [5], only 

the output section was implemented on Xilinx Virtex4 

FPGAs.  

 

In 2011, a tiny version of Mersenne Twister (TinyMT) 

was proposed [6] by Satio and Matsumoto. TinyMT is 

a variant of Mersenne Twister, specially designed with 

a small memory footprint. Satio and Matsumoto have 

shown that TinyMT passed the BigCrush tests of 

TestU01 [7]. There are two types of TinyMT, 

TinyMT32 and TinyMT64. TinyMT32 outputs 32-bit 

unsigned integers and single precision floating point 

numbers. On the other hand, TinyMT64 outputs 64-bit 

unsigned integers and double precision floating point 

numbers. TinyMT is not designed to replace Mersenne 

Twister. In some applications for example, in 

embedded system where, the large state size (19937 

bits) of Mersenne Twister may be an obstruction for 

implementation. TinyMT is designed for such 

situation, with small state size and good randomness 

for that size of internal state.  TinyMT is a small-sized 

pseudo random number generator, compared with 

Mersenne Twister or WELL RNG. TinyMT32 uses 16 

bytes for its internal state vector and 12 bytes for its 

parameters, and TinyMT64 uses 16 bytes for its 

internal state vector and 16 bytes for its parameters. 

Pseudo random number sequences generated by 

TinyMT32 has a period of 
1272 1 . 

 

In this paper, for the first time, an FPGA 

implementation of TinyMT32 was realized on Xilinx 

Virtex4 FPGA which can achieve very high 

throughput with very small area. Four different 

implementation architectures are proposed for various 

applications. The proposed designs are captured using 

VHDL and simulated to verify the correctness of its 

functionality using Mentor Graphics Modelsim 

simulator. The implementation results (Xilinx FPGA 

slices, block RAMs, maximum working frequency, 

throughput, etc) are compared to show that they can 

have a very high throughput with small area footprint 

compared to the full version of Mersenne Twister and 

other comparable PRNGs. 

The rest of the paper is organized as follows: Section 

2 introduces the algorithm of Mersenne Twister and 

Tiny MT. Section 3 gives the implementation of 

TinyMT on Xilinx FPGAs. The implementation 

results are described in Section 4 and Section 5 

concludes this paper with the summary and 

conclusion. 

 

Mersenne Twister and TinyMT Algorithms 
In this section, background information of 

MT19937 and TinyMT algorithms is described. 

Mersenne Twister(MT) is a pseudo random number 

generating algorithm developed by Makoto 

Matsumoto and Takuji Nishimura in 1998 [1]. The MT 

algorithm was developed with the following merits:  

 It is designed with consideration on the flaws 

of various existing generators. 

 The algorithm is coded into a C-source 

downloadable. 

 Far longer period and far higher order of 

equidistribution than any other implemented 

generators. It is proved that the period is 
199372 1 , and 623-dimensional 

equidistribution property is assured. 

 Fast generation. Although it depends on the 

system, it is reported that MT is sometimes 

faster than the standard ANSI-C library in a 

system with pipeline and cache memory.  

 Efficient use of the memory. The 

implemented C-code mt19937.c consumes 

only 624 words of working area.  

MT is a variant of Twisted Generalized Feedback Shift 

Register modification in order to allow a Mersenne 

prime period. The characteristic polynomial has many 

terms, and has good distribution up to v bits of 

accuracy for 32 1v  . The Mersenne Twister 

algorithm generates a sequence of word vectors, which 

are considered to be uniform pseudo random integers 

between 0 to 2 1w  . Dividing it by 2 1w  , each 

word vector can be a floating point number in [0,1]. 

TinyMT is a variant of Mersenne Twister (MT) 

proposed by Saito and Matsumoto [6] in 2011. It is a 

small-sized pseudo random number generator, 

compared with Mersenne Twister or WELL RNG. 

TinyMT32 uses 16 bytes for its internal state vector 

and 12 bytes for its parameters, and TinyMT64 uses 

16 bytes for its internal state vector and 16 bytes for its 

parameters. Pseudo random number sequences 

generated by TinyMT has a period of 
1272 1 . 

TinyMT is specially designed for a small memory 

footprint. On TinyMT, the users can generate multiple 
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independent sequences when choosing different 

sequence parameter sets from TinyMT Dynamic 

Creator (DC) [1]. The seed jumping function, which 

calculates the internal state of TinyMT after an 

arbitrary steps of the recursive state transitions, is also 

provided to make multiple non-overlapping sequences 

from the same sequence parameter sets. TinyMT is 

licensed under the BSD License as well as the other 

MT variants. 

 

TinyMT is a combination of two different functions: 

the state transition function and the output function. 

Two different output functions with 32-bit and 64-bit 

tempering parameters are proposed. The size of 

TinyMT internal state with generation parameters for 

the 32-bit tempering parameter is 28 bytes including 

the 127-bit internal state and three 32-bit generation 

parameters. The period of each generated number 

sequences is 
1272 1 . Saito and Matsumoto [6] have 

showed that TinyMT passed the BigCrush tests of 

TestU01[7], and estimated that the total number of 

generation parameter sets MAT1, MAT2 and TMAT 

which could be generated by the TinyMTDC, a 

variation of MT DC algorithm for TinyMT, is 
58 2  

regarding the number of computed irreducible 

polynomials. TinyMTDC is written in C++ and 

depends on Number Theory Library (NTL) [7]. 

 

There are two types of TinyMT: TinyMT32 and 

TinyMT64. TinyMT32 outputs 32-bit unsigned 

integers and single precision floating point numbers. 

On the other hand, TinyMT64 outputs 64-bit unsigned 

integers and double precision floating point numbers. 

TinyMT is not designed for a particular hardware. It 

will run on many types of hardware, because of its 

small size. TinyMT generates pseudo random numbers 

using two functions: a state transition function and an 

output function. The state transition function is an F2-

linear function whose characteristic polynomial is 

irreducible of degree 127. The output function is not 

F2-linear, but almost F2-linear. The output function is 

composed from several F2-linear functions, except for 

one non F2-linear operation, namely an addition as 

integers modulo 232 (or mod 264 for TinyMT64) 

which replaces an F2-vector addition. 

 

TinyMT is not designed to replace Mersenne Twister. 

In some applications, namely, hardware 

implementation or highly parallel environment, the 

large state size (19937 bits) of Mersenne Twister may 

be an obstruction for implementation. TinyMT is 

designed for such situation, with small state size and 

good randomness for that size of internal state. 

The C-code implementation of TinyMT main 

functions can be seen in Figure 1. 

 
Figure 1. TinyMT Functions in C 

This paper mainly focuses on the FPGA 

implementations of TinyMT32. Various 

implementation architectures are described for 

different applications. 

 

FPGA Implementation of TinyMT-32 
An analysis of TinyMT algorithm shows that the 

process of generating Tiny Mersenne Twister number 

32-bit can be separated into the following 4 steps: 

1) Using TinymtDC, generating the parameters 

MAT1,MAT2,TMAT required for 

TinyMT32.  

http://www.ijesrt.com/


[Wang, 3(9): September, 2014]   ISSN: 2277-9655 
                                                                                         Scientific Journal Impact Factor: 3.449 

         (ISRA), Impact Factor: 2.114 
  

http: // www.ijesrt.com                 (C)International Journal of Engineering Sciences & Research Technology 
[371] 

 

2) In Tinymt32, based on the input parameters 

MAT1,MAT2, and TMAT, initialize the four 

32-bit TinyMT status words with initial 

random 32-bit seed. This process consists of 

MIN_LOOP, Period Certification and Init 

Next State update. 

3) Calling the Next State function, update the 

TinyMT four 32-bit status words and 

generating the untempered numbers. 

4) Calling the temper function, outputting the 

generated random 32-bit number.  

The initialization process only runs once at the 

beginning of its generation, and it will not be called 

again during the generating process. Moreover, the 

generating and tempering processes only require logic 

and XOR operating which consume relatively few 

logic resources on FPGAs. In our implementation, step 

1 is performed with software in advance, the 

generating three 32-bit parameters, that is, MAT1, 

MAT2 and TMAT can be stored in constant memory 

(ROM). Depending on the requirements of the project, 

if only a limited random number sequence is needed, 

then step 2) can also be computed using software in 

advance and stored on FPGA memory. Otherwise, step 

2) to 4) can be implemented on FPGA hardware. For 

example, assuming that we can use 1024 Byte 

parameter ROM to store the parameters generated by 

TinymtDC and assuming that each group (3 

parameters) takes up 3 32-word, then the 1024 byte 

can store more than 64 distinct group parameters to be 

used by TinyMT generator. The initialization step will 

update the TinyMT 4 32-bit status words with the 

initial 32-bit seed based on these preset parameters. 

The TinyMT can generate more than 64 distinct 32-bit 

random number sequences. If the number of these 

distinct group random number sequence is enough, 

then in the system, we only need FPGA to implement 

step 3 and 4. Otherwise, steps 2 to 4) are implemented 

in the FPGA hardware, in which the initial seed ranges 

from 0 to 
322 1  and the TinyMT can generate a very 

large number sequence of random numbers, as high as 
3264 2  distinct random number sequence.  

 

In the following, four different FPGA 

implementations  of TinyMT32 are described, that is, 

TinyMT engine 1 without ROM, TinyMT engine 1 

with ROM, TinyMT engine 2 without ROM and 

TinyMT engine 2 with ROM.  

 

A. Design 1: TinyMT32 Engine 1 without ROM 

In this implementation, the parameters  generated from 

TinyMTDC are initialized/updated by software in 

advance into four 32-bit status words and are loaded 

into the TinyMT engine. The initialized parameters are 

not stored on FPGA memory, instead, they are loaded 

before the generating process. This design takes the 

smallest area and can achieve the highest throughput. 

Figure 2 shows the schematic of such a design. 

However, since the parameters are not stored on 

FPGA, each time a new random sequence is generated, 

a new group parameters (the initialized four 32-bit 

status words and MAT1,MAT2 and TMAT from 

TinyMTDC) will be loaded externally into the FPGA. 

 

 
Figure 2. TinyMT Engine 1 without FPGA Memory 
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B. Design 2: TinyMT32 Engine 1 with on-chip 

ROM 

In this implementation, the parameters generated from 

TinyMTDC are initialized/updated by software in 

advance into four 32-bit status words. They are stored 

on FPGA block RAMs. Assuming that 1024 byte on-

chip RAM is used to store the precalculated 

parameters. Each group status word takes up four 32-

bit, that is, 16 bytes, and 1K RAM can store 64 distinct 

group precalculated parameters. Since both the 

initialized status words (four 32-bit) and MAT1, 

MAT2 and TMAT from TinyMT DC are required for 

the generated, totally 7 block RAMs are needed to 

store these parameters for generation. One advantage 

compared to implementation 1 is that implementation 

2 can generate up to 64 different random number 

sequences. Figure 3 shows the schematic of 

implementation 2. This design has the small memory 

footprint and high throughput, with a little complex 

controller circuit. 

 
Figure 3. TinyMT Engine 1 with on-chip FPGA Memory 

C. Design 3: TinyMT32 Engine 2 without ROM 

The difference between designs 1, 2 and designs 3, 4 

is that, in designs 3 and 4, the parameters MAT1, 

MAT2 and TMAT are generated by TinyMTdc in 

advance using software, then they are loaded into the 

TinyMT engine 2 for hardware initialization and 

update. Thus the initialization process is realized on 

hardware instead of software. In designs 3 and 4, the 

random  initial 32-bit seed can be initialized into a 

value between 0 and 
322 1 , thus up to 

322  different 

random number sequence can be generated for one 

group parameter, MAT1, MAT2 and TMAT. If 1024 

byte on-chip RAM is accessible on FPGA, then up to 
3264 2  distinct random number sequence can be 

created.  

In design 3, the parameters MAT1,MAT2, and TMAT 

are loaded into the TinyMT engine when a new 

random number sequence is needed with the schematic 

shown as Figure 4. 
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Figure 4. TinyMT Engine 2 without on-chip FPGA 

Memory 

D. Design 4: TinyMT32 Engine 2 with 

parameters stored in ROM 

This is the most flexible TinyMT engine design. Sixty-

four distinct group of MAT1,MAT2 and TMAT 

parameters are stored on FPGA 1024 byte RAM. Each 

time, when a new random number sequence is needed, 

the engine loads one group of parameters. When all 64 

group parameters are used up, then the random seed is 

increased by 1, hence, a new random number sequence 

can be generated. This implementation takes up the 

most space with the sacrifices of a little more space.  
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Figure 5. TinyMT Engine 2 without on-chip FPGA Memory 

 

The block diagram can be seen in Figure 5. In this 

implementation, the data path consists of block RAM 

(or registers), controller (Finite State Machine), 

Multiplexers. After reset, the seed is initialized to a 

predetermined number (for example, 0), then the FSM 

controls the TinyMT engine into initialization state, in 

which the MAT1,MAT2,TMAT and SEED are 

converted and updated. This initialization states 

consist of three substates, that is, MIN_LOOP, 

PERIOD_CERTIFRICATION and Init Next State. 

This initialization state is only executed once in the 

beginning of the generation. After the initialization 

state, the FSM controls the TinyMT engine into 

generating state. In this generating state, it generates a 

sequence of 32-bit random number every clock until it 

reaches the required quantity of random number. The 

generated untempered 32-bit random number is 

tempered for the output. For design 4, a total number 

of 
3264 2  distinct random number sequence can be 

generated. 

1. Results and Comparisons 

The proposed Tinymt designs 1, 2 3 and 4 are captured 

with VHDL using Xilinx ISE 13.2 ISE Suite,  

 

 

simulated using Modelsim SE simulator to verify this 

functionality and implemented on Xilinx Virtex4 VFX  

100 FPGA (xc4vfx100-10ff152). 

Table 1 describes the synthesis results with the 

maximum frequency, number of slices, number of 

LUTs used,  RAM, number of DSP48s and throughput 

for each design. 
Table 1. Performance Analysis Comparison of Tinymt Engines 

 

Design RAMs # of slices # of LUTs Max Freq. 

(Mhz) 

# of DSP48s Throughout 

Gb/s 

1 0 206 355 390 0 12.48 

2 7 175 335 349 0 11.17 

3 0 468 818 87 3 2.78 

4 3 444 859 87 3 2.78 
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Table 2.  Comparison of Design Parameters with Other PRNGs 

 

Design FPGA # of Slices # of LUTs # of RAMs Max Freq 

(Mhz) 

Tinymt Engine 

4 

Virtex-4 444 859 3 87 

[2] N/A 420 N/A N/A N/A 

[3] Virtex E 330 539 2 24.23 

[4] Virtex-5 2028 N/A N/A 111 

From 

Table 1, we can see that, for implementations of 

TinyMT designs 1 and 2, the number of slices, 

maximum working frequency, highest throughput are 

very similar except that 7 64x32-bit  RAMs are needed 

for TinyMT design 2 due to the fact that the parameters 

from TinyMT DC and initialized parameters are stored 

on FPGA RAMs. For the implementations of TinyMT 

designs 3 and 4,  the number of slices, maximum 

working frequency, the number of DSP48s, highest 

throughput are also very similar except that 3 64x32-

bit RAMs are needed for TinyMT design 4 since the 

parameters MAT, MAT2 and TMAT from TinyMT 

DC are stored on FPGAs. Designs 1 and 2 have a much 

higher throughput and maximum working frequency 

and takes up smaller areas compared to designs 3 and 

4, because the initialization process are hardware 

implemented for TinyMT designs 3 and 4. TinyMT 

designs 3 and 4 also need three additional DSP48s for 

the initialization. For applications which need limited 

random number sequence, TinyMT designs 1 and 2 

could be good candidates. If a large distinct number of 

random number sequence is required, then TinyMT 

designs 3 and 4 will good choices. If there are 

additional block RAM available on FPGAs, TinyMT 

designs 2 and 4 are better choices than designs 1 and 

3. 

 

Since no previous FPGA implementation of TinyMT 

is available for comparison, we only compare the 

proposed TinyMT design with MT19937 full version 

and the results can be seen in  

Table 2. 

From this table, we can see that the proposed TinyMT 

implementation can achieve a significantly higher 

throughput and occupies less area compared to the 

previous MT1997 on FPGA implementations. 

 

Conclusion and Summary 
Random number generators are essential in 

many computing applications. TinyMT, a variant 

PRNG of the popular Mersenne Twister, has been 

implemented on FPGA for the first time in this paper. 

Four TinyMT engines are proposed for different 

application areas. The proposed implementations 

show a significant high throughput and with small 

areas which are applicable in fields where area is a 

concern. 
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